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an iron ion of approximately twice its mass while the 
associated state corresponds to replacing two Na + ions 
by an iron ion of about the same mass as the two ions 
it replaces. A quantitative estimate of the magnitude 
of these two effects will require a detailed theoretical 
treatment of the problem, which has not yet been at
tempted. The magnitude of the effect is so great, how
ever, that even a crude calculation may be useful. I t 
is interesting that the data on precipitated CoCl2 

indicate a temperature dependence of / which is be
tween that found for the two cases considered here 
(see I) . 

I. INTRODUCTION 

WE would like to derive an expression for the 
coherent scattering cross section for slow neu

trons, in which the anharmonic terms in the lattice 
potential are taken into consideration. Much work has 
been done on the problem of scattering from a perfect 
(harmonic) crystal,1-3 where it is found that the co
herent part may be written as a sum of terms repre
senting scattering with absorption or emission of a 
number of phonons. The elastic term gives rise to peaks 
in the energy spectrum of the scattered neutrons 
(diffraction pattern) at the Bragg angles and the one-
phonon term in the expression also gives rise to a 
5-function peak at the phonon energy. I t has been 
tacitly assumed that for a nonperfect crystal the one-
phonon peak becomes broadened by the interactions 
into a Lorentzian shape whose width is the inverse of the 
phonon lifetime. Such lifetime effects may be described 
in terms of the phonon Green's function and it is the 
purpose of this study to see to what extent the singular 
features of the cross section are related to the Green's 
function. 

The contribution from scattering with multiple 
phonon emission or absorption produces a continuous 
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The broad linewidth observed for the isolated iron 
ions ( ~ 1 mm/sec) may be the result of quadrupole 
broadening from a Jahn-Teller type distortion or a 
trapped hole in the vicinity of the iron ion, although no 
noticeable narrowing was observed as the temperature 
was raised. 
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background in the harmonic case and, by continuity 
arguments, also in the weakly coupled case. 

Experiments by Brockhouse et at} have measured 
large widths in scattering from lead at high tempera
tures and some doubt has surrounded the form of the 
Debye-Waller factor. Although I have been unable 
quantitatively to explain these large widths (the theory, 
in any case, has treated the anharmonic nonmetallic 
crystal) the form of the result shows that for tempera
tures where such anharmonicities are considerable, one 
should expect a departure from the simple Lorentzian 
shape. This statement is very tentative because we have 
assumed weak coupling, working to second order in the 
coupling constant in a consistent manner. 

The problem has been discussed by Brout,5 Baym,6 

Krivoglaz,7 and Maradudin.8 Brout gives a general dis
cussion of the energy spectrum of particles scattered 
from a system in terms of the widths and shifts of the 
states of that system. The approach of the other authors 
is a direct investigation of the formula for the coherent 
cross section. The present work follows on from Baym's 
analysis. We show that his result is applicable to a 
crystal with harmonic forces (including impurities and 
vacancies) but that it needs modification before being 
applied to the anharmonic case. 
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Baym's treatment of coherent scattering of slow neutrons by a crystal is examined and modified to 
include effects due to the cubic-anharmonic term in the lattice potential to second order in the coupling 
constant. Corrections to the Debye-Waller factor and to the "one-phonon" resonance peak are obtained, 
which appear to be negligible (^0.01%) for the case of a Bravais lattice and certainly < 1 % in other cases. 
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The corrections turn out to be small, but the variation 
of the Debye-Waller factor from the Gaussian form 
which is predicted has been noted by experimentalists, 
although no details are available. 

II. FORMULATION OF THE PROBLEM 

The coherent scattering cross section for slow-neu
trons incident on a single crystal may be expressed as 
the Fourier transform of a correlation function as 
follows: 

(I)212 exp—iK« (an— am) / dt exppco(/—/')] 
n,m J 

X{exp—iK-un(t) expiK-um(0)/?. (1) 

The interaction is represented by the Fermi pseudo-
potential and only single scattering is considered. Cer
tain kinematical factors have been omitted as they do 
not enter the discussion. The crystal is taken to have one 
atom per unit cell, for simplicity, (/) is an average of the 
scattering length over all the atoms, an and un are the 
lattice vector to the site n and the displacement from 
equilibrium of the atom at that site, respectively. K and 
o) represent the momentum and energy transfer of the 
neutron due to the scattering. 

Suppose that the Hamiltonian of the crystal is / / . 
Baym's variational derivative technique then follows 
upon consideration of the development of the system 
under the fictitious Hamiltonian 

n 

After time £=Rer , an eigenstate of H at / = 0 , i.e., |0) 
will have developed into the state 

| Rer) = exp(-iH Rer)Tj(Rerfi) | 0) , 
where 

r , ( / / ) = P e x p { - * £ f J „ ( r ) -u B ( r )< f t "} , 

P denoting the time-ordered exponential. 
Defining the matrix element 

{T\X(t)\0)j=Tre-iHrTj(ReT,t)X(t)Tj(t,0) 
( R e r > / > 0 ) , 

it is shown that the correlation function in (1) may be 
obtained from the ratio ( r | 0 ) j / ( r | 0 ) 0 on setting Ji(t) 
= K{8ni5(t—t') — dmi8(t')} and analytically continuing 
the variable r to iff. 

In view of the fact that in the harmonic case the 
correlation function in question contains an exponential 
factor, the Debye-Waller factor, one writes down a 
functional expansion of ln(r 10)j in terms of J. The re
quired variational derivatives may easily be calculated 
from the integral equation which the T operator 

satisfies, i.e., 

TJ+SJ=Tj-i f Tj(t,t')Z bin{t')'Un{tf)Tj+u{tffi)dt^ 
Jo n 

The first- and second-variational derivatives of ln(r 10)j 
are 

5 ( r | u , (0 |0> / 
i__ln<r|0V - — « , ( * ) , (2) 
dh(t) (T\0)J 

and 

*——i ln(r|0>/ 
&Ji(t) dJm(s) 

<r|p(n,(OrMo„(j))|o>J 
= X;(/)xm(». (3) 

<r|0>, 

If the assumption is now made that the first variational 
derivative is a linear functional of / , one obtains 
Baym's result, namely, that 

ln(exp[iK-u„(0] exp[— iK'Um(0)J)p 
= -<(K.u) 2 )^+<K.u n ( / )K.u m (0)) , . 

On intuitive grounds we are led to regard Xi(t) as the 
displacement of atom 1 under the influence of the ex
ternal force J. If the atoms are bound in the lattice by 
harmonic forces, then it is natural to suppose the 
relationship should be linear; but, in general, this con
clusion is not correct. I t is possible to show the func
tional dependence of Xi(t) on J by writing down the dif
ferential equation which it satisfies using the Heisenberg 
equations of motion. One obtains 

J f * l ( O = t < r | [ ^ + E » J » ( 0 - n » ( O , P i W ] | O > X r | O ) j - 1 , 

where p* is the momentum operator conjugate to Uj, Mi 
is the mass of atom at site 1. Taking the potential energy 
of the lattice to be 

V W L AyfcUyUjfc+iX L BjkiUjUkUi, (4) 
j ' , k j , k , l 

we see that for harmonic forces the equation for Xi(t) is 
simply 

M ixi(t)= - J i(t)-J^k Akixk(t), 

which is linear. We can, therefore, assert that Baym's 
result is correct for a perfect crystal (harmonic) and 
for one with impurities or vacant lattice sites provided 
that the interatomic forces are still of "Hookes-law" 
type. Metals are excluded since the coupling of the 
conduction electrons to the lattice vibrations destroys 
the linearity of the equations. 

III. INCLUSION OF THE CUBIC-ANHARMONIC TERM 
TO SECOND ORDER IN THE COUPLING 

Baym's result is, in fact, the leading term in the ex
pansion of ln(exppK» un(t)2 exp[— tK» um(0)]) in powers 
of K. Further terms of the series may be obtained by a 
straightforward differentiation or alternatively by cal-
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culating the higher terms in the functional expansion of 
ln(r 10)j. This last procedure can however be made to 
give some useful identities concerning correlation func
tions for the harmonic crystal. 

The analytic behavior of certain expressions may be 
found by going to the limit of zero coupling, e.g., there 
occurs the Fourier transform of the correlation function 
(K«un(/)[K'Um(0)]3) which, for a harmonic crystal 
factorizes into 3((K«u)2)(K»un(/)K»um(0)) whose trans
form is a multiple of the single-phonon peak. We, there
fore, conclude that the first function has a resonance 
character in the fully interacting crystal. 

Including the cubic anharmonic term in the Hamil-
tonian leads to the following equation of motion for 
xi(t): 

X <r|u,-(0uib(0|0>j 
MiXi(t) = -Ji(t)-Y,AkiXk £Biyjfc • . 

* 2i,k {r\0)j 
From the form of the second-variational derivative of 
(r 10), we have 

8 
( r | u i ( O u , ( 0 | 0 ) X r | 0 ) / -

1 = x , (Ox i ( / )+i x*(/). 
5Jy(0 

In the harmonic approximation Ci, C2, and C3 sepa
rately vanish. However, when anharmonicities are in
cluded, the time-independent C\ represents part of the 
new Debye-Waller factor 

F = e X p [ - ( ( K . u ) ^ ) + A < ( K - u ) ^ ) - i < ( K . u ) y + . • • ] • 

The Fourier transform of C2 will have a resonance 
character as mentioned in the second paragraph of this 
section. I t is assumed that C3, being of "two-phonon" 
character, does not contribute to the one-phonon peak. 

At the moment it is not clear whether or not the 
Fourier transform of terms of degree Kd give a contribu
tion to the one-phonon peak, because each term vanishes 
in the zero coupling limit. We assume that there is a 
contribution and this will subsequently be verified. 

The singular part of the inelastic cross section may be 
thus be written 

F(Si1+ReS2i+((K-uy)Sn-i ReS1 3), (7) 

)f By means of Fourier transformation and diagonalization 
o of the equations of motion which of course leaves the 
> functional dependence on / unaltered, they may be 

written symbolically as 
e 
e / 5 \ 
Q x = J + X ( x * x M — x . (5) 
a V 5J / 

j_ Here the asterisk denotes a convolution integral. 
e Iteration of (5) in powers of X shows that in the ab

sence of the dx/8 J term, x is a functional of J of degree n 
[- correct to 0(Xn_1). The presence of the 5x/8J term does 
>r not raise the functional degree of a given order in X, but 

the term 0(Xn~1) will contain, in addition to the part of 
degree n, parts of lower degree. This means that the 
expansion of ln( r |0 ) j carried to the fourth-variational 
derivative will be correct to order X2. Note that all this 

f refers to the cubic anharmonic term. I t is easily verified 
that the quartic term in the potential would only be 
treated in first order by an expansion terminating at J4. 

After some algebra one can obtain the equation 

where 

SPQ= E e x p p K - ( a n - a O T ) ] ( - ^ + g 

m,n 

X f e^dt((K'Un(t)y(K^m(0))^). (8) 

The elastic part is 

F5 (w) |£»exp( iK .a» ) | 2 . 

IV. TREATMENT OF THE CORRELATION 
FUNCTIONS 

The correlation functions are obtained in this section 
by rinding the spectral representation of the related 
Green's function. Details of the formalism may be found 
in the literature (e.g., Zubarev9) and so will not be 
reproduced here. Briefly the procedure will be to 
calculate the Fourier transform of the retarded Green's 

9 D . N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [translation: 
Soviet Phys.—Usp. 3, 320 (I960)]. 

ln(exp[—iK»uw(/)] exppK-uTO(0)]) 

= - ( ( K . u ? ) + ( K . u w ( O K . u m ( 0 ) ) + i i ( K . u 4 0 ( K - u m ( 0 ) ) 2 ) - | i < ( K . u 4 0 ) 2 K . u m ( 0 ) ) 

+ 1 / 2 4 { 2 < ( K . U ) 4 ) - 4 < K . U „ ( ^ 
+24((K.u) 2 ) (K.u n ( / )K.uw (0))-12<K.u.(OK.um (0)) 2}. (6) 

Consider first the terms of fourth degree in K which may be regrouped as follows: 

d = M K . u ) V l < ( K - n ) » > « , 
C 2 =<(K.u) 2 ) (K.u40K.u m (0 ) ) - i (K.u . (0 (K.u w (0 ) )3 ) - - i ( (K.u n (0 ) 3 K.u m (0 ) ) , 

C 3 =K(K.u w (0 ) 2 (K.u m (O)) 2 ) -K(K.u) 2 ) 2 -KK-u . (0K.u w (O)) 2 . 
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function G(o>) then evaluate We first observe that the terms in this sum with S9^s' 
r( -L.'\ — r( —' \ wm* b e °f s e c o n d order since two "three-phonon proc-

j j m (Q\ esses" are required in order to change the polarization 
c-*° — i(\ — e~Pa) index of a phonon. Defining the retarded Green's 

for the spectral density function p(co). 
In terms of phonon annihilation and creation opera- GSs>(t)=—id(t)([AKs(t),A-Ks>(0)'])(j, 

tors the atomic displacements may be expressed as 

u n = V v(f s)(2Mufs)~
1/2(af s+a-i s^)e~if'&n (fi= 1). w e w r i t e down the differential equation which it satis

fy fies, i.e., 

For convenience, we define the operators T2 

Af8=af8+a-f8i'y Bfs=afs— <2_fst. —( \-o)Ks
2 )GSS' 

\dt2 I 
The Hamiltonian is 

# = Z co fsa fsta fs+i £ b(is,i's'l"s")AuAi>s>Av.s>, = 2a>*.d(O«M'-*W,0(/) E & ( M ; M ; -Ks) 
is / 1 / 2 

W h e r e X(lAflsl(t)Af2S2(t),A„KA0)J). 
b(is,i'sf,i"s") 

= E B^v(fc)v(fy)v(fy') In addition to the new function 

Xexpp(f.a,-+f/.ai+f/,.a*)] 
X (8M3cofscof,s^f-s-)-1/2. ^ ( M > f*5** ~Ks^ 

Assuming cyclic boundary conditions, the dominant 
contribution to the one-phonon peak becomes 

it is convenient to define 
K . V ( K J ) K . V * ( K S ' ) 

SU(K>") = ^ 5 2tf(«M , )» *<M> /•* " ^ 
= -« (0<C^ / i . i W 5 / 2 . 2 ( 0 , ^ - ^ ( O ) ] > / J . 

X I e-^dt{AKs{t)A^KA0))^ ^ . . , . 
7 Their equations of motion are 

-( hcoi2+co2
2V(l, -2, - ^ ) = 2«ico23C+a)iFi2(0+W2F2i(/) 

W / 

- ( rW+co 2
2 )K(1, 2, - ^ ) = 2coico25C+coiF2i(/)+co2Fi2(0 

\dt2 J 

Vu(t) = V(fiSi\ f2S2\ -Ks) = -i6{t) £ b(qijhq2J2, - jiSi)({A qihA q2J2Af2S2) A-Ks)). 
Q1Q2 

The notation (( ; )) represents the thermal average of the commutator. In terms of the Fourier transforms, the 
solution to the above is 

coi+co2 coi—co2 

3C(1, 2, - ^ ) = i [ F 1 2 ( w ) + F 2 1 ( w ) ] + * I T i S ( « ) - M « ) ] ; • 

co2— (coi+co2)
2 co2— (coi—co2)

2 

Replacing Vu(u>) and F2i(co) by their decoupled forms we obtain, correct to second order 

0C(1, 2, - ^ ; c o ) = 2 F ( M , / 2 ^ c o ) Z b(-f1s1~f2s2, Kj)Git>(<a), 
3 

where 
coi+co2 coi—co2 

F(l,2,co) = < » 1 + » 2 + l ) +(ni-n2) . (10) 
co2— (coi+co2)

2 co2— (coi—co2)
2 

Writing now 
R(KS,<*) = <J-<*K.*-2UK. £ F ( l , 2 , co ) |K l ,2 , ^ ) | 2 = co2-coxs

2-2coi,sCi,s(co), 
/1 /2 
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the equation for G(co) may be written as 

R(Ksyu)Gss, = 2co1ass' + 2uKs E ^(l,2,co) E b(l,2,Ks)b*(l,2,Kj)G„(<*). (U) 
/ 1 /2 ?>*« 

Upon setting s'—s, the Green's function on the right-hand side of (11) involves polarization changes so that those 
terms contribute a fourth-order effect. 

Gss(a)) = 2coKs{R(Ks,o>)}-K (12) 

If S'T^S, the dominant term of (11) is the one with j=sf, therefore, 

G„>(W) = G„(«)G.v(a>) E FifrMbifrfz-KsM-fi-fiKs'). (13) 
A/2 

Strictly, this method of approximation is valid only provided that R(K,oi) is 0(1). Near a>= WKS this is not the case, 
but it may be shown that then the solutions are still well approximated by the above formulas. 

Before calculating p(o>) from the prescription stated above (9), we first notice that (12) may be expressed (to 
second order) as 

GBS(co) = [l+cojK;8~
1CJK:8(a))]/[a)—UKS— CKS(W)]_ 1—[co+co^s+Cx^w)]"1} . 

If C#s(a>+ie) = Ax8(co)- £Ties(oo) in which 

A*.(a>) = P E F ( M ^ 2 | w ) | J ( / u i / 2 5 ^ ) | 2 , 
/1 /2 

IVS(C0)=47T E ^ ( / l ^ l M ^ l M ^ l + ^ + l ^ ^ C O - C O i - ^ - a ^ + ^ + COs)] (14) 
/1 /2 

+(fii — w2)[5(co — CO1+CO2) — 5(co+coi—co2)]}. 

We obtain for p^s(co) 

2IVS[1— (GO—COJO)/WJ 2 r K s [ l + ( w + c o x s ) / W J 
( l _ , - ^ ) - i ^ d + ( , - ^ _ ^ -1 # ( 1 5 ) 

( c o - w i r . - A j c ^ + r ^ ( co+co* s +A^) 2 +IW 

In the limit of zero coupling this reduces to the familiar 
result 

2nd (CO—UKs){nKs+1)+27r5 (o)+coKs){nKs). 

Assuming that A (00) and T (co) are slowly varying func
tions of co, then p(co) is seen to be a sum of two modified 
Lorentzian curves, each of width TKS centered about the 
points dz(o)Ks+AKs). 

The expressions, resemble closely the second-order 
perturbation energy correction and a transition proba
bility, respectively. If we were to write expressions for 
the energy correction 8KS for the mode (K,s) and the 
total transition probability JKS for this mode due to the 
"three-phonon processes" then we should find that in 
place of the expectation values of the number operators 
in (14) there would appear 

» x ( » i + l ) ( » 2 + l ) — (nK+^)n1fi2 

and 

nKni (n2+1) — (nK+1) (ni+ l)n2 

so that 

A # s = 5 ( ^ 8 + 1 ) — 8(tiK8); TKs=y(nKs+l) — y(nKs), 

which is a particular case of Brout's result. 

A. First-Order Correction to the 
One-Phonon Peak 

This is given by 

K'\(qiSi) 
-Flm E II D(K-qi-q2)D*(K+qz) 

Q1Q2Q3 i (2MoOqisi)^
2 

xfe'">di(Aqi(t)Aq2(t)Afl3(0))e. (16) 

The diffraction-pattern functions lead to wave-con
servation requirement: 

K = q i + q 2 ; K = - q 3 . 

I t is now apparent that we have to deal with 
3C(#iSi#2S2— Kss). Correct to second order 3C(co) has been 
calculated in the previous section to be 

2F(qiS1q2S20))b(—q1s1—q2S2Ks^GS3Ss(oj). 

The presence of the last factor G(co) relating to a phonon 
(K,s3) justifies the assertion that 512 (Kco) contributes to 
the "one-phonon" peak. In (16) evaluation of the 
summations over qh q2 for co just above the real axis will 
give 
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where 
K - v ( ^ i ) K - v ( ^ 2 ) 

QKS3{U) = P Y, 2F{qiSiq2S2^)b{—qiSi—q2s2Ksz), 
QIQ?. 2M(oOqiSlOOq2S2)

1/2 

K*Y(q1s1)K*v(q2s2) 
<PK8t(<*>) = ir L b(—qiS1—q2s2Ksz) 

q\<n 2M(cO qinO) q2S2)
i/2 

Expression (16) becomes 

X { ( ^ i + ^ 2 + l ) [ 5 ( o ) — o ? i — (x)2) — 5 ( C O + O J I + C O 2 ) ] + ( W I — n2)\J)(w—o)i+co2) — 5(co+o)i —C02)]}. 

K.v*0fo8) 

where 

P^ ( 3 )(co) = 

(2Afcox.,) 1/2 

26KSTKS[A— (U—O)KS)/O>KS~]+ <PKS(U—UKS — AKS) 26KSTKS[.1+(OO+(*>KS)/O)KS']— ^KS(O)+O)KS+AKS) 

[(a>-a>Ks-AKs)2+rKs
2l(l-e-e") l(u+a>Ks+AKs)2+TKs

2~l(e-e"-1) 

Higher order terms involving A2 and T2 have been neglected in the numerators. Because of the algebraic property of 
Lorentzian-type expressions, PKS

U) (&>) is given to a good approximation by 

•(u-aiKs-A^il-e-e")-1 ( c o + c o j r . + A j r . ) ^ - - ! ) " 1 ' 
PKS{® (w) = BKSPKS (W) + ^ s | 

L (O: — O)KS — AKS)2+TKS 

= OKSPKS fa) + VKsVKs (w) . 

( co+^ s +AK S ) 2 +r i , s
2 

(17) 

The one-phonon peak is accordingly represented by consider first, i.e., 

7^V 2£ 
|K.v( iQ) | 2 , 

2iWWs 

1 - I m -
(2ilfcox0 1/2 

K-v( i ^ ) 
- ^ s p^M, 

^ • C ( ( K . u ) 2 ) 5 n - i 5 i 3 ] . (19) 

which may be interpreted by saying that the Debye-
Waller factor for the "one-phonon'' part of the spectrum 
differs from that for the elastic part by the factor 

l-Im(2McoKS)1/2[K. v ( ^ ) ] - ^ s , (18) 

now depending explicitly on polarization through a 
correction term which is first order in the coupling 
constant. 

We have so far neglected the terms in <PKS(OO) which 
involve the function of cr^^co). This part has an asym
metric character which tends to distort the Lorentzian 
shape of the main curve. The width of the curve is only 
affected in higher order, but there will be a contribution 
to the height of order <PKS. Thus, when the anhar-
monicities are appreciable it is clear that the profile will 
no longer be a simple Lorenz shape. 

B. Second-Order Corrections 

In view of the remark at the end of the last section, it 
might seem that a discussion of second-order corrections 
to the "one-phonon" profile is rather academic; how
ever, for a Bravais-type lattice these first-order correc
tions vanish identically so that it is the second-order 
corrections which may be important. These will come 
from the off-diagonal Green's functions G88>(Q)) in (13) 
and also from the fourth derivative of ln(r 10)j which we 

We discuss the equation satisfied by the Green's func
tion G<4>(*) 

G < 4 ( O = - 0 ( / ) « 4 i ; i M a 4 4 » , 

- {d2/dt2+^1
2)G^^=^lb{i)({B1) A2ASA4» (20) 

+wi L b(qiq2—fi)H(qiq2f2fzf±). 

As before, it is convenient to define the functions 

H(0102/2/3/4) = - iB(t)((A qiA Q2; A f2A hA / 4 » 

K(qiq2f2fsf,)==~idmBqiBq2;Af2AfzAu)). 

H and K satisfy differential equations similar in form to 
(9), but we now find extra terms from the nonvanishing 
of certain expectation values. 

- (d2/^2+CO!2+C022)# 

^2^lo)2K+o^1U12+^2U21+8(t){o:1(A£BhAf2Af3AfJ} 

+<*^AJLBl9AftAf9AfJ», (21) 

- (d2/dt2 + ^2 + ^2
2)K 

= 2^1cc2H+^1U2i+^2U12+8(t){o)1(A£BhAf2Af3AfJ) 

+^2(A£BhAf2AhAfJ)} 

+i-8(t)(lB1B2yAf2Af.iAfJ), (22) 
dt 
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where 

B . V. T H O M P S O N 

U12(t)=-id(t)j:b(fsfsf-q1j1) 
ff 

X\y4 q2j2AfSAf>s>; ^4/2S2^4/3S3^4/4S4)). 

Using the definitions 
y= (LBqiA q2+A qiBq2, A f2A fdA fJ), 

z=([BqiBq%,AfiAfsAfJ), 

we obtain just as in Sec. IV A by decoupling U 12(03) 

#(co) = 2F ( M 2 co )£ b(-qi-q2fj)G/»(a>) 

+-
1 (o)qi+uq2)y+a)Z 1 

2 c o 2 - ( c o ^ + c o ^ ) 2 2 co2— (cogi—co92)2 

The index j refers to the polarization of f in 

G^ = G^(ij;i2s2UszUs,). 

Correct to second order, Eq. (20) becomes 

R(Jish<*)G.W(a) 

= (0f181(ZBfiai,AfiAfsAfJ)+§<afl81 £ b(q1q2-f1) 

(23) 

X 
r(o>qi+o)q2)y+uz 

L co2- (co^+co^)2 co2- (coqi—uQ2)
2. 

(24) 

The first term in (19) is cancelled by the first one on the 
right side of (24). Thus, we obtain for (19) 

^ReFN* £ 
K - v ( ^ i ) 

si/2/3/4 (2Ma>Ksi)m 

4 Kv-Cfc*) 
XpW«(« )n - — • 

« (2if«/4.4)y* 

PKs<4) (w) is the density function corresponding to 

r(cogl+co3l);y+£oz 

(25) 

|coK8 E b(qiq2—Ks) 
.co2— (cogl+cOgl)2 

cos 
R(Ks,cc)-K (26) 

co2—(cogi-cog2)
2J 

By the usual argument we find 

PKS
(4) (o)) = iJ,(Ksf2f2f4,a})pKs(a))+fA\Ksf2fzf4,u)aKs(o>), 

in which JU#S (co) is the principal part of the numerator in 
(26) and Mit/(co) is its imaginary part. 

The other second-order effects come from the off-
diagonal Green's functions in Su(Ku>), i.e., from the 
density function corresponding to 

K-y(Ks)K-\*(Ksf) 
£ G88'(o)). 
***' 2M(coK8coj,80

1/2 
(27) 

Rewriting (13) as 

G88> (a)) =-

4vK&K.> E F(f1f2o:)b(f1f2Ks)b^(f1f2Ksf) 
/ l / 2 

(OO2—O)KS
2--2O:KSCKS)(OO2—O)KS'2—2O)KS'CKS') 

we make use of the algebraic identity 

4ab(x2-a2)~1(x2-b2)-1 

2b f 1 1 \ 2a / 1 1 \ 

a2—b2\x—a x-\~a/ a2—b2\x—b x+b/ 

to obtain the approximate relation 

G88(o))G8>8'(o)) 
= 2 (COKS2—COEV2)-1 (UKS'GS -OJKSGS>S>). (28) 

We are justified in neglecting certain second-order cor
rections to the factors multiplying Gss and G8'8> in (28) 
since the whole expression is to be further multiplied by 

<w(«) = E F(f1Mb(f1f2Ks)b^(flj2Ks'). 
/1 /2 

In exact analogy with the derivation of (17) and the 
discussion of (26), the density function corresponding to 
ass>Gss> is given by 

V8a>PKs(u) + V88'
f<TKs(<*) , 

where vss> and vss>' are the real and imaginary parts of 
aSs>(o)-\-ie). On inserting this last expression into (27) 
one obtains as the second-order contribution to 5ii(Kco) 

4iV2Re E 
K.v(^)K.v*(^0 cox./ 

2M(o)KsOJKs>)112 UKs2 — UKs 

X ZVss'PKs (CO) + Vss>'(JKs (co)] . 

SUMMARY AND CONCLUSION 

We have seen that while Baym's treatment is inexact 
for a crystal with anharmonicities, it does represent a 
good approximation and is correct for a nonmetallic 
crystal with harmonic forces. A method of dealing with 
the case of a crystal with impurities has been indicated 
by Krivoglaz, although he appears to neglect certain 
first-order effects associated with the phonon correlation 
functions (a/(j)a_/(0)) and ( a / ( / ) a _ / ( 0 ) ) . By con
sidering primarily the operators A /, these terms are 
easily included as in the present work. 

Generally, the elastic scattering peak is multiplied by 
a new Debye-Waller factor 

exp[-<(K.a)»>+A<(K-u)«>-i<(K.u)*>»+- • • ] , 

where the corrections in the exponent are of second 
order for the particular anharmonic interaction we have 
considered. I t is possible to continue the exponent, in 
which the next term is 

(l/360)[((K.u)«)-15<(K.u)2)((K.u)4)+30((K.u)2)3] 



N E U T R O N S C A T T E R I N G BY AN A N H A R M O N I C C R Y S T A L 1427 

but this represents a fourth-order effect in the present 
case. 

In order to discuss the features of the inelastic scat
tering one requires, in addition to the one-phonon 
Green's functions, higher degree correlation functions if 
the anharmonicity is to be consistently included to any 
given order. Because of the wave-vector conservation 
property of the lattice potential it is found that these 
corrections are associated with a particular phonon 
wave vector and contain "resonance-denominators." 
We are thus justified in regarding them as corrections to 
the " one-phonon" peak. 

Although the higher correlation functions contain the 
resonance factor p(co), they also contribute an asym
metric correction term o-(w). The Lorentzian profile of 
the cross section is, therefore, distorted and it is no 
longer strictly correct to regard its width as a direct 
measure of the phonon lifetime. 

The first-order correction to the one-phonon peak, 
which depends on the integrals 6 and <p, will vanish 
identically for a Bravais lattice with a center of sym
metry since the polarization vectors v(/,s) and the 
coefficients b(isi's'i"s") are real in that case. In the 
case of a more general type of lattice this term need not 
vanish. In order to estimate the size of this correction 
for the general case and also the size of the second-order 
correction which persists even in a Bravais lattice, we 
recall Eq. (7). This expresses the zero-, first-, and 
second-order terms of the cross section, respectively, as 

Sn, ReSi2, <(K.u)2)Sn—| ReSis, 

where the quantities Spq are defined in (8). 
In the Appendix it is argued that the orders of 

magnitude of these expressions are in the ratios of the 
quantities 

<(K.n)*>:<(K.a)»>:K(K.»)*>-<(K.n)% 

Taking a linear anharmonic-oscillator model represented 
by a particle in the potential 

V(x) = Ax*-B%\ 

we obtain for the above ratios, using Boltzmann 
statistics 

1: (15/4) | K | B^A'2: (5/2) | K12B2p~2A-A. 

The quantity IZBBA~2 is the coefficient of linear ex
pansion, which is of order 10~4 to 10~5 per °C, so that 

{KlB^A-^lOr^TlKla. 

"a" is the interatomic spacing (\K\ —a-1)- For 
T= 300°K, the ratios become 

1:10-2(10~3):10-4(10-5), 

showing that the correction terms contribute ~ 1 % or 
less to the one-phonon peak. This figure is certainly a 
generous upper limit for the first-order term because the 

fact that the first correction vanishes in the case of a 
Bravais lattice means that in other cases it might still 
vanish or at least be smaller than the quantity | Su | . 

We can conclude that while the corrections discussed 
in this work exist they appear to be very small for 
dielectric crystals. In particular, for the Bravais lattice 
the correction is negligible (^0.01%). 
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APPENDIX 

From Eq. (8) and using afS-\-a-fS
+=A /s, we can write 

SiP=-(-i)1+p E exp[—iK-(a„—a*,)] 

XL [ 
. K.v(/*) 

exp(if«an) 
(2Ma>/s)

1/2 

X<i4 / . (0 (K-u» (O) )V ' . (Al) 

Now the Fourier transform of the phonon Green's 
functions is consistent with the following time depend
ence for the annihilation and creation operators: 

afs(t) = afs exp[—iT fs\t\ —i(a)fs+Afs)f\. 

Substitution of these expressions in (Al) gives for the 
peaks, corresponding to phonon emission, 

{-iy+l E e x p [ - i K . ( a n - a m ) ] 

xE 
(U-UKS-AKST+TKS2 

K-v(jfa) exp(if«an) 
X ^ 

/ (2Mo>fsyi* 
<a /s(K-um)p>. 

The order of magnitude of this quantity is unaltered on 
replacing afs by A / s in the expectation value. Making 
this replacement and averaging the sum over / over 
polarizations we obtain for the (K,s') phonon peak 

(-i)v+l E e x p [ - i K . ( a n - a m ) ] 
n,m 

TRS 

x-
(CX)--O)KS — AKS)2+TKS2 

Txs 

(U—UKS-AKSY+TKS2 
0<(K.u)p+1>. 


